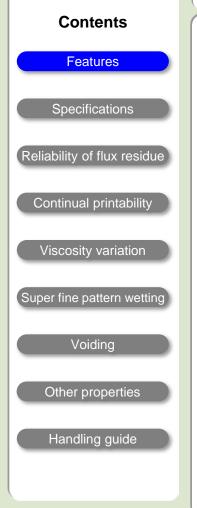


www.ko-ki.co.jp

#50037E-1 Revised on Nov. 15, 2013



Product features

- Solder alloy composition is Sn 3.0Ag 0.5Cu (SAC305)
- Inhibits ionic migration in severe environmental changes, such as temperature and humidity
- Flux residue remains CRACK FREE after 1000 cycles of thermal cycling (-30 to +80°C)
- Applicable for AIR REFLOW, assuring excellent WETTING over a range of large to micro components such as 1005 chip and 0.35mm dia. BGA.
- Suitable for automotive, industrial and marine applications
- Conformal coating may be eliminated

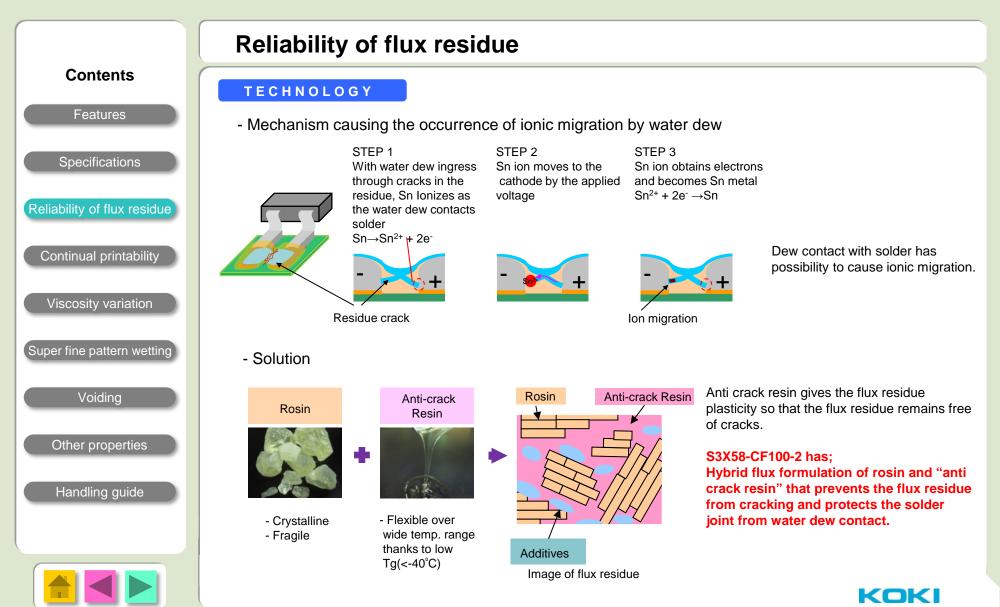
Specifications

Features **Specifications** Reliability of flux residue Continual printability Viscosity variation Super fine pattern wetting Voiding Other properties Handling guide

Contents

	Application	Printing - Stencil			
Product		S3X58-CF100-2			
Alloy	Alloy Composition (%)	Sn 3.0Ag 0.5Cu			
	Melting Point (°C)	217~219			
	Shape	Spherical			
	Particle size (um)	20 – 38			
Flux	Halide Content (%)	0			
	Flux Type	ROL0*3			
	Flux Content (%)	11.2±1.0			
	Viscosity*1 (Pa.s)	190±30			
Product	Cupper plate corrosion*2	Passed			
	Tack Time	> 24 hours			
	Shelf Life(below 10°C)	6 months			

- *1. Viscosity :
- *2. Copper plate corrosion :
- *3. Flux type :


Malcom spiral type viscometer, PCU-205 at 25°C 10rpm In accordance with IPC J-STD-004 According to IPC J-STD-004

CHALLENGING NEW TECHNOLOGIES

100V

	Reliability of flux residue					
Contents	TEST MET	нор				
Features	Test method	SIR High temp./Humidity (conventional)	Dew test method (A)			
Specifications Reliability of flux residue	Test board	JIS comb board Lines: 0.318mm width Spacing: 0.318mm width Stencil: 0.1mm thick	IPC-B-25 (E pattern) Lines: 0.318mm width Spacing: 0.318mm width Stencil: 0.1mm thick			
Continual printability Viscosity variation						
Super fine pattern wetting Voiding	Environment condition	Temperature: 85°C Humidity: 85%RH Time: 1008 hrs	Temperature: 10°C~80°C Humidity: 30%RH~95%RH Cycle: 30 times			
Other properties Handling guide			BWW Dewing Test Ohamber programing (5 cycles # 1.6 dev)			
	Applied Voltage	45-50V	50V			

100V

Measuring Voltage

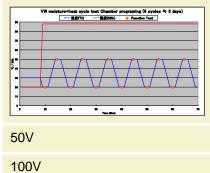
Reliability of flux residue

**** 11

Dew test method (B) IEC 60068-2-30

0.318mm width

0.318mm width


0.1mm thick

IPC-B-25(E pattern)

Lines:

Stencil:

Spacing:

5

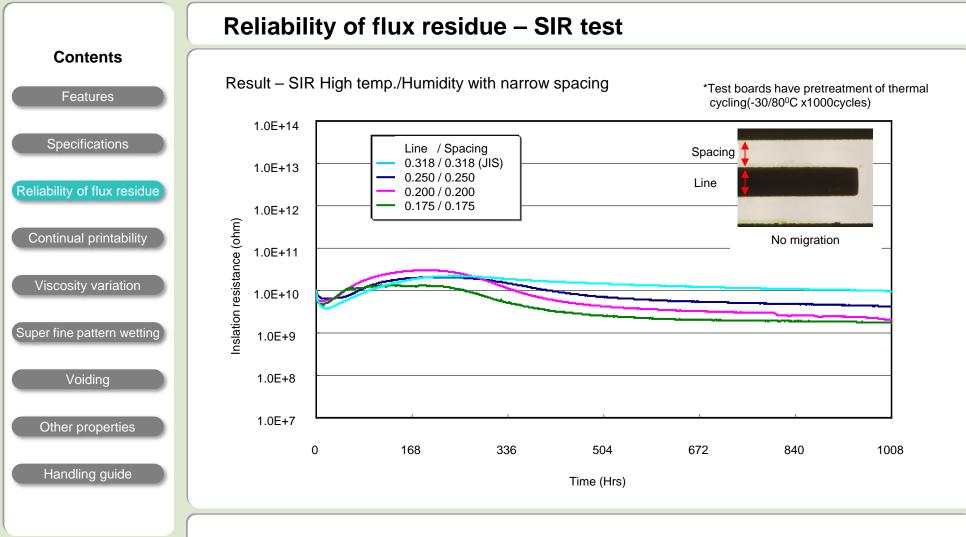
CHALLENGING NEW TECHNOLOGIES

Reliability of flux residue – Dew test Contents Result – Dew test method (A) *Test boards have pretreatment of thermal cycling(-30/80°C x1000cycles) Features 1.0E+16 1.0E+15 **Specifications** Flux residue of S3X58-CF100-2 1.0E+14 nsulation Resistivity (ohm) 1.0E+13 Reliability of flux residue 1.0E+12 1.0E+11 Continual printability 1.0E+10 1.0E+09 Viscosity variation 1.0E+08 Conventional rosin type 1.0E+07 -S3X58-CF100-2 >No electromigration is observed. Super fine pattern wetting Short circuit >Residue remains crack-free. 1.0E+06 0 50 100 (hr) 150 200 Voiding Flux residue of conventional rosin type SEM-EDX analysis >Evidence of Sn migration is Other properties Sn Black-colored short observed. Orechter path is showed in >Migration occurred along EDX the residue cracking. the cracking residue. SEM image Handling guide A 27-A 8537 27:22 2-2A 0.000 heV Flux residue of S3X58-CF100-2 shows high resistance and no evidence of electromigration issues under the high

humidity the elect

Flux residue of S3X58-CF100-2 shows high resistance and no evidence of electromigration issues under the high humidity environment, while conventional rosin type results exhibit short circuit and migration occurrence between the electrodes.

CHALLENGING NEW TECHNOLOGIES

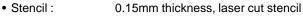

Reliability of flux residue – Dew test Contents Result – dewing test method (B) *Test boards have pretreatment of thermal cycling(-30/80°C x1000cycles) Features 1.0E+17 n1 **Specifications** 1.0E+16 n2 - n3 1.0E+15 Reliability of flux residue 1.0E+14 Inslation resistance (ohm) 1.0E+13 Continual printability 1.0E+12 Viscosity variation 1.0E+11 1.0E+10 Super fine pattern wetting 1.0E+9 Voiding 1.0E+8 1.0E+7 Other properties 12 0 24 36 48 60 72 Time (Hrs) Handling guide *Pretreatment means enhancement of residue cracking. But the residue keeps crack free with high resistance even after pretreatment.

Flux residue of S3X58-CF100-2 shows high resistance of over 1.0E+10 ohm under the high humidity environment in method (B).

Flux residue of S3X58-CF100-2 shows high resistance even with the narrow spacing of 0.175mm.

S3X58-CF100-2

	Reliability o	f flux residu	e - Ant	i-crack	ing property	
Contents						
Features	 Material : Surface treatment : Stencil thickness : Stencil aperture : 	Glass epoxy FR-4 OSP 0.15mm (laser cut) 100% aperture opening	•	 Thermal cyc Test chamber 		n./cycle x 1000cycles
Specifications	Components : Pad : Heat source : Atmosphere :	0.5mmP QFP 1.0-0.15Gap Hot air convection Air				
Reliability of flux residue	Reflow profile :	Same as "Super fine pat	ttern wetting"			
Continual printability			0.5mml	P QFP	1.0-0.15mmGap	
Viscosity variation		Initial	8 8 8 0 0 0	5 5 5		
Super fine pattern wetting						
Voiding			000	000		
Other properties		after 1000 cycles				
Handling guide					LAAIE	
	-	ed in the flux residue be	etween the lea	ds or electro	des, even after thermal cy	cling of -30/+80 ^o C x 1000
	cycles.					


Continual printability

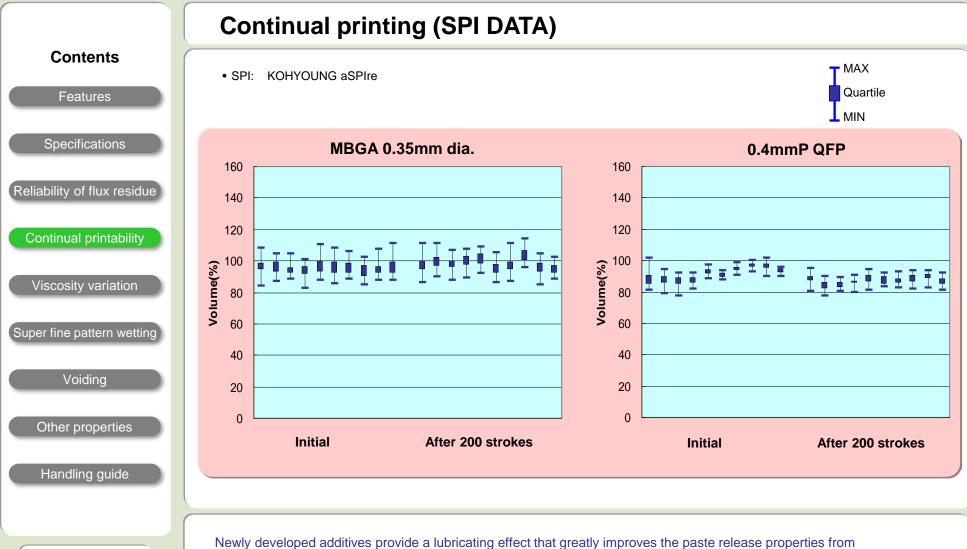
Contents

Other properties

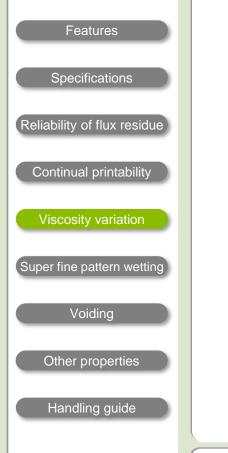
Handling guide

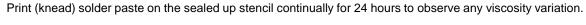
- Printer : Model YVP-Xg YAMAHA Motor
- Squeegee : Metal blade, Angle 60°
- Print speed : 40 mm/sec
- Atmosphere : 24~26 °C (50~60%RH)
- Test pattern : 0.4mmP QFP pad pattern 0.35mm dia.

	1st print		10th print			After 200strokes 10th print						
0.35mmdia.												
0.4mmP QFP												

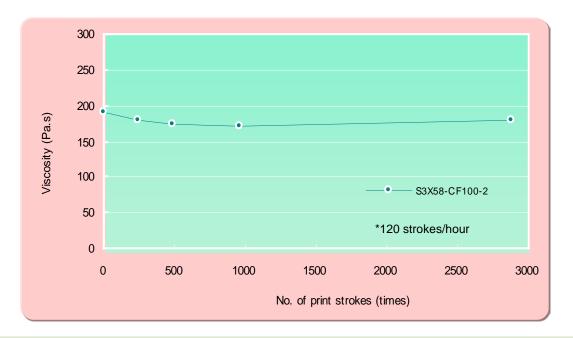

Consistent and quality printability over the whole continual printing process.

Newly developed additives provide a lubricating effect that greatly improves the paste release properties from stencil apertures and assures excellent print quality even with micro-BGA.


CHALLENGING NEW TECHNOLOGIES



S3X58-CF100-2


Viscosity variation

Contents

•Squeegee :Metal blade, Angle - 60°•Squeegee speed :30mm/sec.•Print stroke :300mm•Printing environment :24~26°C, 40~60%RH

A newly developed flux formula has succeeded to realize consistent long term printability. This is achieved by preventing excessive viscosity drop due to shear thinning and excessive viscosity increase due to the chemical reaction between solder powder and flux during print rolling.

Super fine pattern wetting

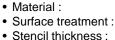
Contents

Features

Specifications

Reliability of flux residue

Continual printability


Viscosity variation

Super fine pattern wetting

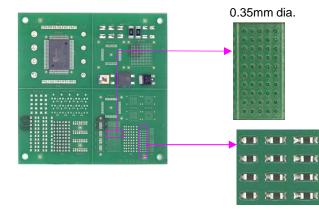
Voiding

Other properties

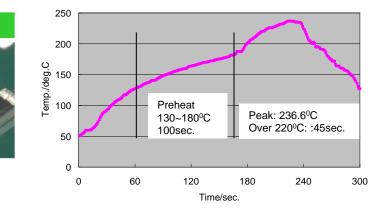
Handling guide

• Pad size :

• Component:


- Glass epoxy FR-4
- OSP
- 0.15mm (laser cut)
 - 0.35mm diameter
- Stencil aperture : 100% aperture opening to pad
 - Hot air convection
- Reflow profile :

0.35mm dia.

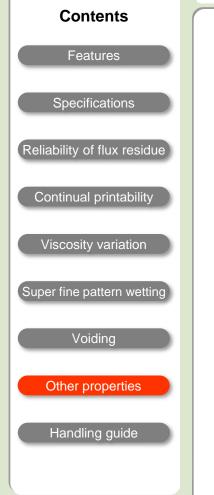

- 1005R chip, 100%Sn

1005R

- Heat source : • Atmosphere : Air
 - See below

1005R chip (0402)

Larger relative surface areas of solder paste exposed due to miniaturization of components (CSP, 1005 chips), often causes incomplete coalescence of the solder due to excessive oxidation during the reflow. An improved flux formula ensures complete coalescence by minimum deterioration of the flux's barrier performances .


	Voiding					
Contents						
Features	 Material : Surface treatment : Stencil thickness : 	Glass epoxy FR-4 OSP 0.15mm (laser cut)			→ 6330R (2512) → BGA	
Specifications	 Stencil aperture : Components Heat source : 	100% aperture opening to Pwtr, 2012R 100% Sn pla 6330R 100% Sn plated, E Hot air convection	ated	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		
Reliability of flux residue	Atmosphere : Reflow profile :	Air Same as <i>"Super fine patt</i>	tern wetting"			
Continual printability		Pwtr.	6330R	2012R	BGA	
Viscosity variation				49.49		
Super fine pattern wetting	n1					
Voiding						
Other properties	n2					
Handling guide						
	Combination of a flux cl	nemistry that allows quick	flow and the evacuation	of flux gas from the molten	solder alloy.	

Other properties

ltem	Result	Method
Tack time	> 24 hours	JIS Z 3284
Heat slump	0.3mm pass	JIS Z 3284
Solder balling	< Category 3	JIS Z 3284
Copper mirror corrosion	Type L	IPC-JSTD-004
Copper plate corrosion	Pass	IPC-JSTD-004 JIS Z 3284
Voltage applied SIR	> 1E+9 ohm	IPC-JSTD-004 JIS Z 3284

Handling guide

Contents

Features

Specifications

Reliability of flux residu

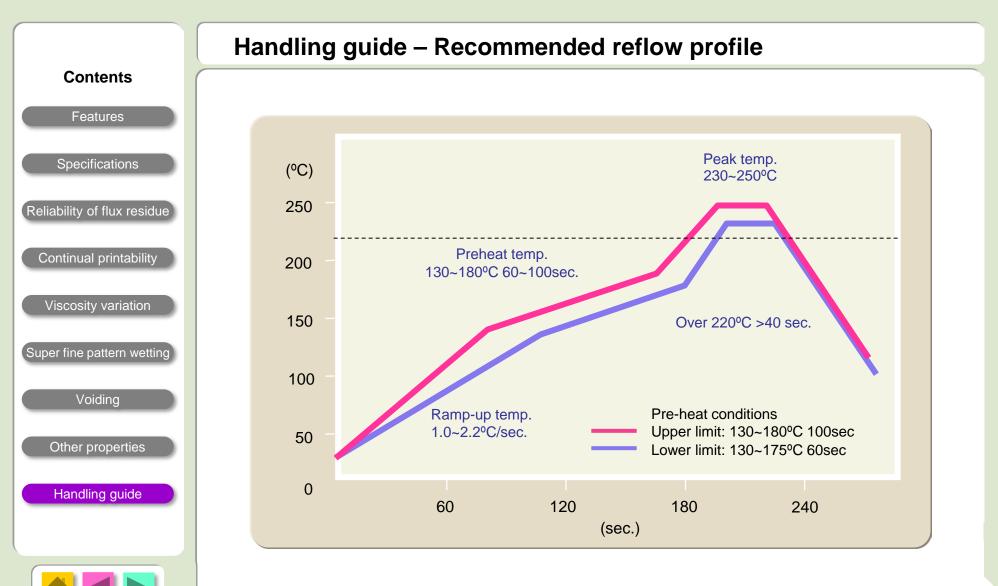
Continual printability

Viscosity variation

Super fine pattern wettin

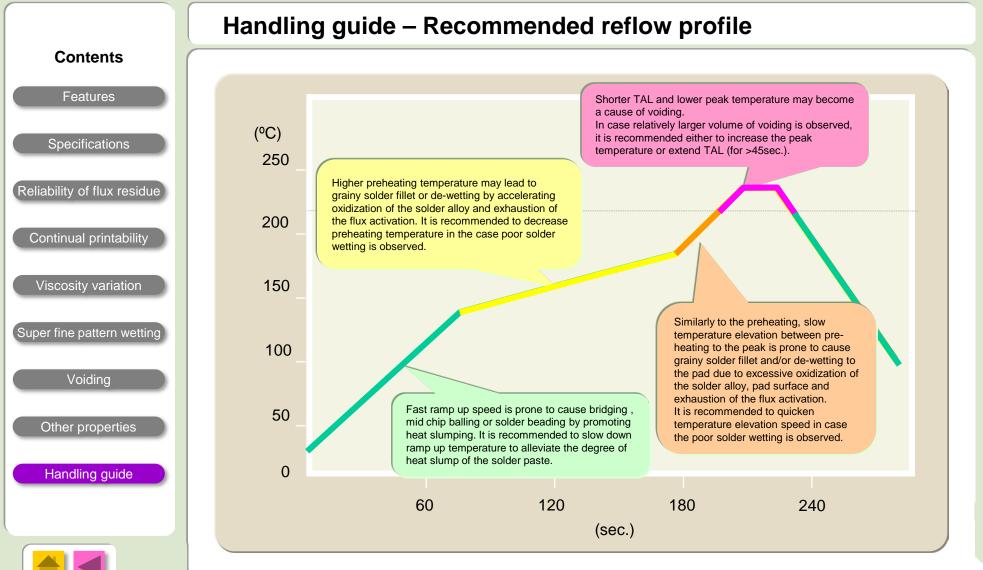
Voiding

Other properties


Handling guide

	1. Printing	
	1) Recommended printing pa	rameters
	(1) Squeegee	
	1. Kind	: Flat
	2. Material	: Rubber or metal blade
	3. Angle	: 60~70°
ue	4. Pressure	: Lowest
	5. Squeegee speed	: 20~80mm/sec.
	(2) Stencil	
	1. Thickness	: 150~120μm for 0.65~0.4mm pitch pattern
	2. Type :	: Laser or electroform
	3. Separation speed	: 7.0~10.0mm/sec.
-	4. Snap off distance	: 0mm
na	(3) Ambiance	
19	1. Temperature	: 23~27°C
	2. Humidity	: 40~60%RH
D	3. Air conditioning	: Excessive air flow in the printer badly affects stencil life and tack performance of solder pastes.
	2. Shelf life	
-	0~10°C	: 6 months from manufacturing date
		e can be obtained from the lot number
	ex. Lot No. 3	No. of lot : 2nd Date : 13th Month : May
		Month : May Year : 2013

KOK CHALLENGING NEW TECHNOLOGIES



CHALLENGING NEW TECHNOLOGIES

